Cart (Loading....) | Create Account
Close category search window

A Two-Time-Scale Design for Edge-Based Detection and Rectification of Uncooperative Flows

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Fan, X. ; Electr. & Comput. Eng. Dept., Miami Univ., FL ; Chandrayana, K. ; Arcak, M. ; Kalyanaraman, S.
more authors

Existing Internet protocols rely on cooperative behavior of end users. We present a control-theoretic algorithm to counteract uncooperative users which change their congestion control schemes to gain larger bandwidth. This algorithm rectifies uncooperative users; that is, forces them to comply with their fair share, by adjusting the prices fed back to them. It is to be implemented at the edge of the network (e.g., by ISPs), and can be used with any congestion notification policy deployed by the network. Our design achieves a separation of time-scales between the network congestion feedback loop and the price-adjustment loop, thus recovering the fair allocation of bandwidth upon a fast transient phase

Published in:

Networking, IEEE/ACM Transactions on  (Volume:14 ,  Issue: 6 )

Date of Publication:

Dec. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.