By Topic

Sharp Bending of On-Chip Silicon Bragg Cladding Waveguide With Light Guiding in Low Index Core Materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A novel on-chip Bragg cladding waveguide is designed and fabricated using conventional CMOS techniques. This optical waveguide has a low refractive index core surrounded by high index-contrast cladding bilayers. Polysilicon (n=3.5) and silicon nitride (n=2.0) are used for high index-contrast Bragg layers, where index difference is as high as 1.5. Our simulation shows that sharp bending in low index core materials can be achieved, which is not possible using index guiding mechanism. Within our approach, various on-chip applications are expected such as optical integration, high power transmission, biosensor/microelectromechanical system and so on

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 6 )