By Topic

Development of CMOS-Compatible Integrated Silicon Photonics Devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

This paper surveys technical challenges involved in designing and manufacturing integrated optoelectronic devices in a high-volume complementary metal-oxide-semiconductor (CMOS) microelectronic fabrication facility. The paper begins by introducing the motivations for building these devices in silicon. We discuss the advantages and challenges of both hybrid and monolithic strategies for optoelectronic integration. We then discuss the issues involved in building the devices in a standard CMOS facility, including specific technical examples. These include low-loss waveguides (WGs) for Raman lasers, fast silicon modulators, SiGe heterostructures for infrared photodetection, silicon-oxynitride (SiON) devices on silicon-on-insulator (SOI), silicon optical bench (SiOB) technology, and waveguide tapers. We conclude with a discussion and recommendations for future work in silicon photonics

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 6 )