By Topic

Computing the Equilibria of Bimatrix Games Using Dominance Heuristics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We propose a formulation of a general-sum bimatrix game as a bipartite directed graph with the objective of establishing a correspondence between the set of the relevant structures of the graph (in particular elementary cycles) and the set of the Nash equilibria of the game. We show that finding the set of elementary cycles of the graph permits the computation of the set of equilibria. For games whose graphs have a sparse adjacency matrix, this serves as a good heuristic for computing the set of equilibria. The heuristic also allows the discarding of sections of the support space that do not yield any equilibrium, thus serving as a useful preprocessing step for algorithms that compute the equilibria through support enumeration

Published in:

2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)

Date of Conference:

Nov. 2006