By Topic

Constrained Global Optimization by Constraint Partitioning and Simulated Annealing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wah, B. ; Dept. of Electr. & Comput. Eng., Illinois Univ., Urbana-Champaign, IL ; Yixin Chen ; Wan, A.

In this paper, we present constraint-partitioned simulated annealing (CPSA), an algorithm that extends our previous constrained simulated annealing (CSA) for constrained optimization. The algorithm is based on the theory of extended saddle points (ESPs). By decomposing the ESP condition into multiple necessary conditions, CPSA partitions a problem by its constraints into subproblems, solves each independently using CSA, and resolves those violated global constraints across the subproblems. Because each subproblem is exponentially simpler and the number of global constraints is very small, the complexity of solving the original problem is significantly reduced. We state without proof the asymptotic convergence of CPSA with probability one to a constrained global minimum in discrete space. Last, we evaluate CPSA on some continuous constrained benchmarks

Published in:

Tools with Artificial Intelligence, 2006. ICTAI '06. 18th IEEE International Conference on

Date of Conference:

Nov. 2006