By Topic

Self-field effects in two-dimensional Nb Josephson-junction arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

We have measured two-dimensional niobium Josephson junction arrays in which self induced fields are important. We find an increase of the depinning current when /spl lambda//sub /spl perp//, the penetration depth in the array, is of the order of one. There is evidence for a destruction of commensurate vortex states in the arrays as the depinning current becomes almost independent of the applied magnetic field. Our data also show that self-field effects change the array flux-flow dynamics and decrease the effective array viscosity.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:5 ,  Issue: 2 )