By Topic

An Extended Extremal Optimisation Model for Parallel Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Randall, M. ; Bond University, Australia ; Lewis, A.

A relatively new meta-heuristic, known as extremal optimisation (EO), is based on the evolutionary science notion that poorly performing genes of an individual are replaced by random mutation over time. In combinatorial optimisation, the genes correspond to solution components. Using a generalised model of a parallel architecture, the EO model can readily be extended to a number of individuals using evolutionary population dynamics and concepts of self-organising criticality. These solutions are treated in a manner consistent with the EO model. That is, poorly performing solutions can be replaced by random ones. The performance of standard EO and the new system shows that it is capable of finding near optimal solutions efficiently to most of the test problems.

Published in:

e-Science and Grid Computing, 2006. e-Science '06. Second IEEE International Conference on

Date of Conference:

Dec. 2006