By Topic

Characterization of a superconductive sigma-delta analog to digital converter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Miller, D.L. ; Sci. & Technol. Center, Westinghouse Electr. Corp., Pittsburgh, PA, USA ; Przybysz, J.X. ; Meier, D.L. ; Joonhee Kang
more authors

Sigma-delta analog to digital converters (ADCs) use a combination of oversampling and feedback to concentrate quantization noise outside the frequency band of interest. Subsequent digital filtering can then be used to suppress the quantization noise and yield a large signal to noise ratio. Sigma-delta ADCs dominate the high performance audio market, where the signal band is limited to frequencies below 50 kHz and 8 octave oversampling requires a sampling rate of only 25.6 MHz. Przybysz et al. have described a superconductive circuit capable of >40 GHz sampling, thereby extending the useful bandwith to tens of MHz. In this paper, we describe the realization of that circuit and present measurements of its performance. Spectral analysis of the modulator performance shows spur-free dynamic range of over 78 dB and third order intermodulation products less than -68 dBc. Quantization noise shaping is also demonstrated.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:5 ,  Issue: 2 )