By Topic

Superconducting high-resolution A/D converter based on phase modulation and multichannel timing arbitration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rylov, S.V. ; HYPRES Inc., Elmsford, NY, USA ; Robertazzi, R.P.

We have developed a flux-quantizing A/D converter (ADC) based on RSFQ elements, employing a novel front end capable of generating high-linearity multibit differential code within a wide dynamic range (up to 16 bits). The front end operates as a phase modulator/demodulator and uses fractional-flux-quantum least significant bit (LSB). It runs at multi-GHz speed, enabling ADCs with large oversampling ratio and effective resolution in excess of 20 bits (after decimation filtering). We have designed, fabricated and tested several versions of a complete ADC using this new architecture and demonstrated its operation with dynamic range of 14 bits. We have also confirmed continuous phase modulation of the flux quantizer with a carrier frequency of 10 GHz.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:5 ,  Issue: 2 )