By Topic

High sensitivity magnetic flux sensors with direct voltage readout: double relaxation oscillation SQUIDs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
D. J. Adelerhof ; Dept. of Appl. Phys., Twente Univ., Enschede, Netherlands ; M. J. van Duuren ; J. Flokstra ; H. Rogalla
more authors

The experimental sensitivity of double relaxation oscillation SQUIDs (DROSs) has been compared with theory and with the results obtained by numerical simulations. The experimental sensitivity ranges from 60 to 13h, where h is Planck's constant, for relaxation frequencies from 0.4 up to 10 GHz. For low frequencies the DROS characteristics can be explained by thermal noise on the critical currents. For high frequencies, the voltage-flux characteristics and the sensitivity are limited by the plasma frequency. The cross-over frequency is at 2 GHz, which is about 2% of the plasma frequency of the DROSs.<>

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:5 ,  Issue: 2 )