By Topic

Fault Tolerant Differential Evolution Based Optimal Reactive Power Flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sheng Su ; Computational Intelligence Applications Research Laboratory (CIARLab), Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Electrical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China. E-MAIL:, ; C. y. Chung ; K. p. Wong ; Y. f. Fung
more authors

Differential evolution (DE) is a new branch of evolutionary algorithms (EAs) and has been successfully applied to solve the optimal reactive power flow (ORPF) problems in power systems. Although DE can avoid premature convergence, large population is needed and the application of DE is limited in large-scale power systems. Grid computing, as a prevalent paradigm for resource-intensive scientific application, is expected to provide a computing platform with tremendous computational power to speed up the optimization process of DE. When implanting DE based ORPF on grid system, fault tolerance due to unstable environment and variation of grid is a significant issue to be considered. In this paper, a fault tolerant DE-based ORPF method is proposed. In this method, when the individuals are distributed to the grid for fitness evaluation, a proportion of individuals, which returns from the grid slowly or fails to return, are replaced with new individuals generated randomly according to some specific rules. This approach can deal with the fault tolerance and also maintain diversity of the population of DE. The superior performance of the proposed approach is verified by numerical simulations on the ORPF problem of the IEEE 118-bus standard power system

Published in:

2006 International Conference on Machine Learning and Cybernetics

Date of Conference:

13-16 Aug. 2006