By Topic

Decision-Feedback Receiver for Quasi-Orthogonal Space-Time Coded OFDM Using Correlative Coding Over Fast Fading Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu Zhang ; Sch. of Electr. Eng. & Comput. Sci., Oregon State Univ., Corvallis, OR ; Huaping Liu

Orthogonal frequency division multiplexing (OFDM) is robust against frequency selective fading, but it is very vulnerable to time selective fading. In quasi-orthogonal space-time coded OFDM (ST-OFDM) systems, channel variations cause not only inter-carrier interference among different subcarriers in one OFDM block, but also inter-transmit-antenna interference (ITAI). When applied in fast fading channels, common ST-ODFM receivers usually suffer from an irreducible error floor. In this letter, we apply frequency-domain correlative coding combined with a modified decision-feedback detection scheme to effectively suppress the error floor of quasi-orthogonal ST-OFDM over fast fading channels. The effectiveness of the proposed scheme in mitigating the effects of channel time selectivity is demonstrated through comparison with existing schemes such as zero-forcing, two-stage zero-forcing, and sequential decision feedback estimation

Published in:

Wireless Communications, IEEE Transactions on  (Volume:5 ,  Issue: 11 )