By Topic

A State-Observer-Based Approach for Synchronization in Complex Dynamical Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guo-ping Jiang ; Coll. of Autom., Nanjing Univ. of Posts & Telecommun. ; Wallace Kit-sang Tang ; Guanrong Chen

In this paper, a new approach for synchronization of complex dynamical networks is proposed based on state observer design. Unlike the common diagonally coupling networks, where full state coupling is typically needed between two nodes, here it is suggested that only a scalar coupling signal is required to achieve network synchronization. Some conditions for synchronization, in the form of an inequality, are established based on the Lyapunov stability theory, which can be transformed to a linear matrix inequality and easily solved by a numerical toolbox. Two typical dynamical network configurations, i.e., global coupling and nearest-neighbor coupling, with each node being a modified Chua's circuit, are simulated. It is demonstrated that the proposed scheme is effective in achieving the expected chaos synchronization in the complex network

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:53 ,  Issue: 12 )