Cart (Loading....) | Create Account
Close category search window

Radiation Modes and Roughness Loss in High Index-Contrast Waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

We predict the scattering loss in rectangular high index-contrast waveguides, using a new variation of the classical approach of coupled-mode theory. The loss predicted by this three-dimensional (3-D) model is considerably larger than that calculated using previous treatments that approximate the true 3-D radiation modes with their two-dimensional counterparts. The 3-D radiation modes of the ideal waveguide are expanded in a series of cylindrical harmonics, and the coupling between the guided and radiation modes due to the sidewall perturbation is computed. The waveguide attenuation can then be calculated semianalytically. It is found that the dominant loss mechanism is radiation rather than reflection, and that the transverse electric polarization exhibits much larger attenuation than transverse magnetic polarization. The method also gives simple rules that can be used in the design of low-loss optical waveguides. The structural properties of sidewall roughness of an InGaAs/InP pedestal waveguide are measured using atomic force microscopy, and the measured attenuation is found to compare well with that predicted by the model.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 6 )

Date of Publication:

Nov.-dec. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.