By Topic

A new Camera Model and Algorithms for higher Accuracy and better Convergence in Vision-based Pose Calculations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ryberg, A. ; Dept. of Technol., Math. & Comput. Sci., Univ. West, Trollhattan ; Christiansson, A.-K. ; Eriksson, K. ; Lennartson, B.

This paper presents novel strategies for better calibration and pose calculations of a system for determining the pose, i.e. position and orientation, of a camera. The system in question has a camera aimed to be placed on the hand of an industrial robot for welding, but is useful for any application with a need for measuring position and/or orientation. To calculate the pose of the camera circular reference points that can be recognized in the images are distributed in the working area. From their 2D image coordinates the 6D pose of the camera can be calculated. First the system is calibrated, i.e. the positions of the reference points and the camera parameters are determined. This is done by first taking images of the reference points from different locations, and then do a "total calibration" procedure to calculate the unknown parameters. For a specific system, called PosEye, it was concluded that the accuracy needs to be improved for welding applications. Also a method for making the calculations converge more easily, was needed. To meet these demands a new camera model is proposed, and three preprocessing calculation steps are presented. The new camera model increases accuracy by considering more distortion effects. The preprocessing steps give better initial values for more robust convergence of the algorithms and increased accuracy

Published in:

Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on

Date of Conference:

25-28 June 2006