By Topic

Towards Autonomous Systems: From Control Systems to Intelligent Control to Intelligent Behavior Generation to Cooperative Autonomy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Moore, K.L. ; G.A. Dobelman Distinguished Chair and Professor of Engineering, Division of Engineering, Colorado School of Mines, U.S.A.

Today a number of enabling technologies have matured to the point that it is possible to build robots and intelligent machines that are physically capable of autonomous behavior. However, to achieve the promise of autonomy, we also need equivalently-mature information-processing and decision systems to exploit these physical capabilities. In this talk we discuss the problem of devising truly autonomous systems in three parts, describing several threads of research from the speaker's experience. In Part 1, we begin with a discussion of intelligent control, including its promise and reality, introducing specifically the paradigm of iterative learning control (ILC). After highlighting and critiquing the history and accomplishments of ILC, we posit that in fact intelligent control has not achieved its promise and argue that as we try to develop increasingly autonomous systems we need better understandings of the purpose (goals), the components (memory, learning), and organization of intelligence (models, language, architecture). From this motivator, in Part 2 we consider how to move beyond conventional intelligent control to develop intelligent behavior generators for single-system autonomy, focusing on mobile robots operating in semi-structured environments. We present an intelligent, reactive command and control system that uses a multi-resolution, hierarchical task-decomposition strategy based on a grammar of atomic actions. The effectiveness of the strategy is demonstrated in actual tests with real robots in which the path-planning and control algorithms are implemented in a distributed processing environment.

Published in:

Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on

Date of Conference:

June 2006