Cart (Loading....) | Create Account
Close category search window
 

Recurrent Fuzzy Neural Network Using Genetic Algorithm for Linear Induction Motor Servo Drive

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Lin, F.-J. ; Dept. of Electr. Eng., Nat. Dong Hwa Univ. ; Huang, P.-K.

A recurrent fuzzy neural network (RFNN) using genetic algorithm (GA) is proposed to control the mover of a linear induction motor (LIM) servo drive for periodic motion in this paper. First, the dynamic model of an indirect field-oriented LIM servo drive is derived. Then, an on-line training RFNN with backpropagation algorithm is introduced as the tracking controller. Moreover, to guarantee the global convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates of the RFNN. In addition, a real-time GA is developed to search the optimal weights between the membership layer and the rule layer of RFNN on-line. The theoretical analyses for the proposed RFNN using GA controller are described in detail. Finally, experimental results show that the proposed controller provides high-performance dynamic characteristics and is robust with regard to plant parameter variations and external load disturbance

Published in:

Industrial Electronics and Applications, 2006 1ST IEEE Conference on

Date of Conference:

24-26 May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.