By Topic

Pattern independent maximum current estimation in power and ground buses of CMOS VLSI circuits: Algorithms, signal correlations, and their resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Kriplani ; Illinois Univ., Urbana, IL, USA ; F. N. Najm ; I. N. Hajj

Currents flowing in the power and ground (P&G) buses of CMOS digital circuits affect both circuit reliability and performance by causing excessive voltage drops. Excessive voltage drops manifest themselves as glitches on the P&G buses and cause erroneous logic signals and degradation in switching speeds. Maximum current estimates are needed at every contact point in the buses to study the severity of the voltage drop problems and to redesign the supply lines accordingly. These currents, however, depend on the specific input patterns that are applied to the circuit. Since it is prohibitively expensive to enumerate all possible input patterns, this problem has, for a long time, remained largely unsolved. In this paper, we propose a pattern-independent, linear time algorithm (iMax) that estimates at every contact point, an upper bound envelope of all possible current waveforms that result by the application of different input patterns to the circuit. The algorithm is extremely efficient and produces good results for most circuits as is demonstrated by experimental results on several benchmark circuits. The accuracy of the algorithm can be further improved by resolving the signal correlations that exist inside a circuit. We also present a novel partial input enumeration (PIE) technique to resolve signal correlations and significantly improve the upper bounds for circuits where the bounds produced by iMax are not tight. We establish with extensive experimental results that these algorithms represent a good time-accuracy trade-off and are applicable to VLSI circuits

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:14 ,  Issue: 8 )