Cart (Loading....) | Create Account
Close category search window
 

Improved direct torque and flux vector control of PWM inverter-fed induction motor drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kazmierkowski, M.P. ; Inst. of Control & Ind. Electron., Warsaw Univ. of Technol., Poland ; Kasprowicz, A.B.

In this paper, a direct torque and stator flux vector control system is presented. The principle of this method was proposed by Takahashi and Noguchi in 1985. In contrast to the field oriented control, no coordinate transformation and current control loop is required. In practical application, however, problems occur with starting and operation in the zero speed region. This paper shows how, by introducing an additional carrier signal to the torque controller input, a robust start and improved operation in the low speed region can be achieved. The simulation and experimental results which illustrate the performances of the proposed system are presented. Also, nomograms for controller design are given

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:42 ,  Issue: 4 )

Date of Publication:

Aug 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.