By Topic

Cooperative Sensing among Cognitive Radios

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mishra, S.M. ; School of Electrical Engineering and Computer Science, University of California, Berkeley, California 94704. Email: ; Sahai, A. ; Brodersen, R.W.

Cognitive Radios have been advanced as a technology for the opportunistic use of under-utilized spectrum since they are able to sense the spectrum and use frequency bands if no Primary user is detected. However, the required sensitivity is very demanding since any individual radio might face a deep fade. We propose light-weight cooperation in sensing based on hard decisions to mitigate the sensitivity requirements on individual radios. We show that the "link budget" that system designers have to reserve for fading is a significant function of the required probability of detection. Even a few cooperating users (~10-20) facing independent fades are enough to achieve practical threshold levels by drastically reducing individual detection requirements. Hard decisions perform almost as well as soft decisions in achieving these gains. Cooperative gains in a environment where shadowing is correlated, is limited by the cooperation footprint (area in which users cooperate). In essence, a few independent users are more robust than many correlated users. Unfortunately, cooperative gain is very sensitive to adversarial/failing Cognitive Radios. Radios that fail in a known way (always report the presence/absence of a Primary user) can be compensated for by censoring them. On the other hand, radios that fail in unmodeled ways or may be malicious, introduce a bound on achievable sensitivity reductions. As a rule of thumb, if we believe that 1/N users can fail in an unknown way, then the cooperation gains are limited to what is possible with N trusted users.

Published in:

Communications, 2006. ICC '06. IEEE International Conference on  (Volume:4 )

Date of Conference:

June 2006