Cart (Loading....) | Create Account
Close category search window
 

Accurate quasi-TEM spectral domain analysis of single and multiple coupled microstrip lines of arbitrary metallization thickness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jen-Tsai Kuo ; Dept. of Commun. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan

The quasi-TEM spectral domain approach (SDA) is extended to rigorously and efficiently analyze single and multiple coupled microstrip lines of arbitrary metallization thickness. The charge distributions on both the horizontal and vertical conductor surfaces are modeled by global basis functions. This results in a relatively small matrix for accurate determination of the line parameters of coupled thick microstrips. A convergence study is performed for the results of a pair of coupled lines with crucial structural parameters to explore the conditions for obtaining reliable solutions using the technique. Results for thick microstrips are validated through comparison with those from available measurements and another theoretical technique. The soundness of the technique is further demonstrated by looking into the trend of the results obtained by a simplified model in which the structural parameters are pushed, step by step, to the numerical extremities. Variations of circuit parameters of a four-line coupled microstrip structure due to the change of finite metallization thickness are presented and discussed

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:43 ,  Issue: 8 )

Date of Publication:

Aug 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.