By Topic

Feature Selection Using a Hybrid Associative Classifier with Masking Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Performance in most pattern classifiers is improved when redundant or irrelevant features are removed, however, this is mainly achieved by successive classifiers construction. In this paper hybrid classification and masking techniques are presented as a new feature selection approach. The algorithm uses a hybrid classifier to provide a mask that identifies the optimal subset of features without having to compute a new classifier at each step. This method allows us to identify irrelevant or redundant features for classification purposes. Our results suggest that this method is shown to be a feasible way to identify optimal subset of features.

Published in:

2006 Fifth Mexican International Conference on Artificial Intelligence

Date of Conference:

Nov. 2006