Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at We apologize for any inconvenience.
By Topic

LRED: A Robust and Responsive AQM Algorithm Using Packet Loss Ratio Measurement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chonggang Wang ; Dept. of Electr. Eng., Arkansas Univ., Fayetteville, AR ; Jiangchuan Liu ; Bo Li ; Sohraby, K.
more authors

Active queue management (AQM) is an effective means to enhance congestion control, and to achieve trade-off between link utilization and delay. The de facto standard, random early detection (RED), and many of its variants employ queue length as a congestion indicator to trigger packet dropping. Despite their simplicity, these approaches often suffer from unstable behaviors in a dynamic network. Adaptive parameter settings, though might solve the problem, remain difficult in such a complex system. Recent proposals based on analytical TCP control and AQM models suggest the use of both queue length and traffic input rate as congestion indicators, which effectively enhances stability. Their response time generally increases however, leading to frequent buffer overflow and emptiness. In this paper, we propose a novel AQM algorithm that achieves fast response time and yet good robustness. The algorithm, called Loss Ratio-based RED (LRED), measures the latest packet loss ratio, and uses it as a complement to queue length for adaptively adjusting the packet drop probability. We develop an analytical model for LRED, which demonstrates that LRED is responsive even if the number of TCP flows and their persisting times vary significantly. It also provides a general guideline for the parameter settings in LRED. The performance of LRED is further examined under various simulated network environments, and compared to existing AQM algorithms. Our simulation results show that, with comparable complexities, LRED achieves shorter response time and higher robustness. More importantly, it trades off the goodput with queue length better than existing algorithms, enabling flexible system configurations

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:18 ,  Issue: 1 )