Cart (Loading....) | Create Account
Close category search window

Hypergraph-Partitioning-Based Remapping Models for Image-Space-Parallel Direct Volume Rendering of Unstructured Grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cambazoglu, B.B. ; Dept. of Comput. Eng., Bilkent Univ., Ankara ; Aykanat, C.

In this work, image-space-parallel direct volume rendering (DVR) of unstructured grids is investigated for distributed-memory architectures. A hypergraph-partitioning-based model is proposed for the adaptive screen partitioning problem in this context. The proposed model aims to balance the rendering loads of processors while trying to minimize the amount of data replication. In the parallel DVR framework we adopted, each data primitive is statically owned by its home processor, which is responsible from replicating its primitives on other processors. Two appropriate remapping models are proposed by enhancing the above model for use within this framework. These two remapping models aim to minimize the total volume of communication in data replication while balancing the rendering loads of processors. Based on the proposed models, a parallel DVR algorithm is developed. The experiments conducted on a PC cluster show that the proposed remapping models achieve better speedup values compared to the remapping models previously suggested for image-space-parallel DVR

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:18 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.