Cart (Loading....) | Create Account
Close category search window
 

Model Predictive Control for Transparent Teleoperation Under Communication Time Delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sirouspour, S. ; Dept. of Electr. & Comput. Engineering, McMaster Univ., Hamilton, Ont. ; Shahdi, A.

Prior efforts in bilateral teleoperation under communication delay have mainly yielded control algorithms that sacrifice performance in order to guarantee robust stability. In contrast, this paper proposes a multimodel predictive controller that can enhance the teleoperation transparency in the presence of a known constant delay. Separate controllers are designed for free motion/soft contact and contact with rigid environments, with switching between these mode-based control laws occurring according to the identified contact mode. Performance objectives such as position tracking and tool impedance shaping for free motion/soft contact, as well as position and force tracking for contact with rigid environments, are incorporated into a multi-input/multi-output state-space representation of the system dynamics. New Artstein-type state and measurement transformations are proposed to generate delay-free dynamics suitable for output-feedback control, based on the original dynamics with delays in various input and output channels. The application of the continuous-time linear quadratic Gaussian control synthesis to the resulting mode-based delay-free dynamics yields control laws that guarantee closed-loop stability and enhanced performance in each phase of teleoperation. The robustness of the mode-based controllers with respect to parametric uncertainty is analyzed. Experimental results with a single-axis teleoperation setup demonstrate the effectiveness of the proposed approach

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 6 )

Date of Publication:

Dec. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.