By Topic

A 20 dBm Linear RF Power Amplifier Using Stacked Silicon-on-Sapphire MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In this letter, a fully integrated 20-dBm RF power amplifier (PA) is presented using 0.25-mum-gate silicon-on-sapphire metal-oxide-semiconductor field-effect transistors (MOSFETs). To overcome the low breakdown voltage limit of MOSFETs, a stacked FET structure is employed, where transistors are connected in series so that each output voltage swing is added in phase. By using triple-stacked FETs, the optimum load impedance for a 20-dBm PA increases to 50Omega, which is nine times higher than that of parallel FET topology for the same output power. Measurement of a single-stage linear PA shows small-signal gain of 17.1 dB and saturated output power of 21.0dBm with power added efficiency (PAE) of 44.0% at 1.88 GHz. With an IS-95 code division multiple access modulated signal, the PA shows an average output power of 16.3 dBm and PAE of 18.7% with adjacent channel power ratio below -42dBc

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:16 ,  Issue: 12 )