By Topic

Look-Back Technique to Generate Multistep Finite State Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Nowadays, technologies are attempting to increase systems speed beyond the limits imposed by the capacity of the systems themselves. That is the case of finite state machines where improving the iteration bound is critical for reaching the desired performance. A good solution to improve them is to parallelize the finite state machines in order to improve their speed. In this paper we propose a methodology that makes use of the Z transform, better known as an important tool for discrete time system characterization. The proposed algorithm, starts from the canonical description of the finite state machine and generates the parallel version of the finite state machine with the desired level of parallelism while preserving its original behavior

Published in:

Electronics, Robotics and Automotive Mechanics Conference (CERMA'06)  (Volume:2 )

Date of Conference:

26-29 Sept. 2006