By Topic

Reliable Detection of Overtaking Vehicles Using Robust Information Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ying Zhu ; Dept. of Real-Time Vision & Modeling, Siemens Corporate Res. Inc., Princeton, NJ ; Comaniciu, D. ; Pellkofer, M. ; Koehler, T.

Early detection of overtaking vehicles is an important task for vision-based driver assistance systems. Techniques utilizing image motion are likely to suffer from spurious image structures caused by shadows and illumination changes, let alone the aperture problem. To achieve reliable detection of overtaking vehicles, the authors have developed a robust detection method, which integrates dynamic scene modeling, hypothesis testing, and robust information fusion. A robust fusion algorithm, based on variable bandwidth density fusion and multiscale mean shift, is introduced to obtain reliable motion estimation against various image noise. To further reduce detection error, the authors model the dynamics of road scenes and exploit useful constraints induced by the temporal coherence in vehicle overtaking. The proposed solution is integrated into a monocular vision system onboard for obstacle detection. Test results have shown superior performance achieved by the new method

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:7 ,  Issue: 4 )