We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

DGPS-Based Vehicle-to-Vehicle Cooperative Collision Warning: Engineering Feasibility Viewpoints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Han-Shue Tan ; California PATH, Univ. of California at Berkeley, Richmond, CA ; Jihua Huang

The vehicle collision warning system (CWS) is an important research and application subject for vehicle safety. Most of this topic's research focuses on autonomous CWSs, where each vehicle detects potential collisions based entirely on the information measured by itself. Recently, an alternative scenario has arisen. This scenario is known as cooperative driving, where either the vehicle or the infrastructure can communicate its location, intention, or other information to surrounding vehicles or nearby infrastructure. Since installing a low-cost global-positioning-system (GPS) unit is becoming a common practice in vehicle applications, its implications in cooperative driving and vehicle safety deserve closer investigation. Furthermore, the future trajectory prediction may lead to a straightforward approach to detect potential collisions, yet its effectiveness has not been studied. This paper explores the engineering feasibility of a future-trajectory-prediction-based cooperative CWS when vehicles are equipped with a relatively simple differential GPS unit and relatively basic motion sensors. The goals of this paper are twofold: providing an engineering argument of possible functional architectures of such systems and presenting a plausible example of the proposed future-trajectory-based design, which estimates and communicates vehicle positions and predicts and processes future trajectories for collision decision making. In this paper, common GPS problems such as blockage and multipath, as well as common communication problems such as dropout and delays, are assumed. However, specific choices of GPS devices and communication protocol or systems are not the focus of this paper

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:7 ,  Issue: 4 )