By Topic

The Effect of Sulfur Treatment on the Temperature-Dependent Performance of InGaP/GaAs HBTs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Shiou-Ying Cheng ; Dept. of Electron. Eng., Nat. Ilan Univ. ; Ssu-I Fu ; Tzu-Pin Chen ; Po-Hsien Lai
more authors

Temperature-dependent dc characteristics and RF performances of InGaP/GaAs heterojunction bipolar transistors with sulfur treatment are systematically studied. The base-surface-recombination current, specific contact resistance, and sheet resistance of the studied devices can be effectively reduced by sulfur treatment. Practically, long-time sulfur treatment is not appropriate. In this paper, the studied device with the sulfur treatment for 12-15 min is a good choice. Experimentally, the collector-emitter offset voltage DeltaVCE and dc current gain with sulfur treatment can be substantially reduced and increased, respectively, over the 300-K-400-K temperature range. Moreover, as the temperature is increased, the device with sulfur treatment exhibits temperature-independent or thermally stable performances. The devices with sulfur treatment also exhibit improved RF characteristics

Published in:

IEEE Transactions on Device and Materials Reliability  (Volume:6 ,  Issue: 4 )