By Topic

Decoupling Adaptive Fuzzy Sliding-Mode Control with Rule Reduction for Nonlinear System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lon-Chen Hung ; Dept. of Electr. Eng., National Central Univ., Jhongli ; Hung-Yuan Chung

In this paper, adaptive fuzzy sliding-mode controller design approach with decoupling method is proposed. The decoupling method provides a simple way to achieve asymptotic stability for a class of fourth-order nonlinear system. The adaptive fuzzy sliding-mode control system is comprised of fuzzy controller and a compensation controller. The compensation controller is designed to compensate for the difference between the ideal computational controller and the fuzzy controller. Using this approach, the response of system will converge faster than that of previous reports. The simulation results for a ball-beam system presented to demonstrate the effectiveness and robustness of the method

Published in:

Cybernetics and Intelligent Systems, 2006 IEEE Conference on

Date of Conference:

7-9 June 2006