By Topic

A Genetic Algorithms Approach to Non-coding RNA Gene Searches

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Smith, S.F. ; Dept. of Electr. & Comput. Eng., Boise State Univ.

A genetic algorithm is proposed as an alternative to the traditional linear programming method for scoring covariance models in non-coding RNA (ncRNA) gene searches. The standard method is guaranteed to find the best score, but it is too slow for general use. The observation that most of the search space investigated by the linear programming method does not even remotely resemble any observed sequence in real sequence data can be used to motivate the use of genetic algorithms (GAs) to quickly reject regions of the search space. A search space with many local minima makes gradient decent an unattractive alternative. It is shown that a fixed-length representation for alignment of two sequences taken from the protein threading literature can be adapted for use with covariance models

Published in:

Adaptive and Learning Systems, 2006 IEEE Mountain Workshop on

Date of Conference:

24-26 July 2006