Cart (Loading....) | Create Account
Close category search window
 

Genetic Approach for Neural Scheduling of Multiobjective Fuzzy PI Controllers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Serra, G. ; Sch. of Electr. & Comput. Eng., State Univ. of Campinas ; Bottura, C.

This paper presents an intelligent gain scheduling adaptive control approach for nonlinear plants. A fuzzy PI discrete controller is optimally designed by using a multiobjective genetic algorithm for simultaneously satisfying the following specifications: overshoot and settling time minimizations and output response smoothing. A neural gain scheduler is designed, by the backpropagation algorithm, to tune the optimal parameters of the fuzzy PI controller at some operating points. Simulation results are shown for adaptive speed control of a DC servomotor used as actuator of robotic manipulators

Published in:

Evolving Fuzzy Systems, 2006 International Symposium on

Date of Conference:

Sept. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.