Cart (Loading....) | Create Account
Close category search window

A Comparison of Decision Tree Ensemble Creation Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Banfield, R.E. ; Dept. of Comput. Sci. & Eng., South Florida Univ., Tampa, FL ; Hall, L.O. ; Bowyer, K.W. ; Kegelmeyer, W.P.

We experimentally evaluate bagging and seven other randomization-based approaches to creating an ensemble of decision tree classifiers. Statistical tests were performed on experimental results from 57 publicly available data sets. When cross-validation comparisons were tested for statistical significance, the best method was statistically more accurate than bagging on only eight of the 57 data sets. Alternatively, examining the average ranks of the algorithms across the group of data sets, we find that boosting, random forests, and randomized trees are statistically significantly better than bagging. Because our results suggest that using an appropriate ensemble size is important, we introduce an algorithm that decides when a sufficient number of classifiers has been created for an ensemble. Our algorithm uses the out-of-bag error estimate, and is shown to result in an accurate ensemble for those methods that incorporate bagging into the construction of the ensemble

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.