Scheduled System Maintenance:
On Wednesday, July 29th, IEEE Xplore will undergo scheduled maintenance from 7:00-9:00 AM ET (11:00-13:00 UTC). During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A Statistics-Based Approach to Binary Image Registration with Uncertainty Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Simonson, K.M. ; Sandia Nat. Labs., Albuquerque, NM ; Drescher, S.M. ; Tanner, F.R.

A new technique is described for the registration of edge-detected images. While an extensive literature exists on the problem of image registration, few of the current approaches include a well-defined measure of the statistical confidence associated with the solution. Such a measure is essential for many autonomous applications, where registration solutions that are dubious (involving poorly focused images or terrain that is obscured by clouds) must be distinguished from those that are reliable (based on clear images of highly structured scenes). The technique developed herein utilizes straightforward edge pixel matching to determine the "best" among a class of candidate translations. A well-established statistical procedure, the McNemar test, is then applied to identify which other candidate solutions are not significantly worse than the best solution. This allows for the construction of confidence regions in the space of the registration parameters. The approach is validated through a simulation study and examples are provided of its application in numerous challenging scenarios. While the algorithm is limited to solving for two-dimensional translations, its use in validating solutions to higher-order (rigid body, affine) transformation problems is demonstrated

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 1 )