By Topic

Spatio-Temporal Context for Robust Multitarget Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nguyen, H.T. ; Dept. of Electr., Comput., & Syst. Eng., Rensselaer Polytech. Inst., Troy, NY ; Qiang Ji ; Smeulders, A.W.M.

In multitarget tracking, the main challenge is to maintain the correct identity of targets even under occlusions or when differences between the targets are small. The paper proposes a new approach to this problem by incorporating the context information. The context of a target in an image sequence has two components: the spatial context including the local background and nearby targets and the temporal context including all appearances of the targets that have been seen previously. The paper considers both aspects. We propose a new model for multitarget tracking based on the classification of each target against its spatial context. The tracker searches a region similar to the target while avoiding nearby targets. The temporal context is included by integrating the entire history of target appearance based on probabilistic principal component analysis (PPCA). We have developed a new incremental scheme that can learn the full set of PPCA parameters accurately online. The experiments show robust tracking performance under the condition of severe clutter, occlusions, and pose changes

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 1 )