Cart (Loading....) | Create Account
Close category search window
 

Joint Optimization of Word Alignment and Epenthesis Generation for Chinese to Taiwanese Sign Synthesis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu-Hsien Chiu ; Home Network Technol. Center, Ind. Technol. Res. Inst., Tainan ; Chung-Hsien Wu ; Hung-Yu Su ; Chih-Jen Cheng

This work proposes a novel approach to translate Chinese to Taiwanese sign language and to synthesize sign videos. An aligned bilingual corpus of Chinese and Taiwanese sign language (TSL) with linguistic and signing information is also presented for sign language translation. A two-pass alignment in syntax level and phrase level is developed to obtain the optimal alignment between Chinese sentences and Taiwanese sign sequences. For sign video synthesis, a scoring function is presented to develop motion transition-balanced sign videos with rich combinations of intersign transitions. Finally, the maximum a posteriori (MAP) algorithm is employed for sign video synthesis based on joint optimization of two-pass word alignment and intersign epenthesis generation. Several experiments are conducted in an educational environment to evaluate the performance on the comprehension of sign expression. The proposed approach outperforms the IBM Model2 in sign language translation. Moreover, deaf students perceived sign videos generated by the proposed method to be satisfactory

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.