System Maintenance:
There may be intermittent impact on performance while updates are in progress. We apologize for the inconvenience.
By Topic

Pores and Ridges: High-Resolution Fingerprint Matching Using Level 3 Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jain, A.K. ; Dept. of Comput. Sci. & Eng., Michigan State Univ. ; Yi Chen ; Demirkus, M.

Fingerprint friction ridge details are generally described in a hierarchical order at three different levels, namely, level 1 (pattern), level 2 (minutia points), and level 3 (pores and ridge contours). Although latent print examiners frequently take advantage of level 3 features to assist in identification, automated fingerprint identification systems (AFIS) currently rely only on level 1 and level 2 features. In fact, the Federal Bureau of Investigation's (FBI) standard of fingerprint resolution for AFIS is 500 pixels per inch (ppi), which is inadequate for capturing level 3 features, such as pores. With the advances in fingerprint sensing technology, many sensors are now equipped with dual resolution (500 ppi/1,000 ppi) scanning capability. However, increasing the scan resolution alone does not necessarily provide any performance improvement in fingerprint matching, unless an extended feature set is utilized. As a result, a systematic study to determine how much performance gain one can achieve by introducing level 3 features in AFIS is highly desired. We propose a hierarchical matching system that utilizes features at all the three levels extracted from 1,000 ppi fingerprint scans. Level 3 features, including pores and ridge contours, are automatically extracted using Gabor filters and wavelet transform and are locally matched using the iterative closest point (ICP) algorithm. Our experiments show that level 3 features carry significant discriminatory information. There is a relative reduction of 20 percent in the equal error rate (EER) of the matching system when level 3 features are employed in combination with level 1 and 2 features. This significant performance gain is consistently observed across various quality fingerprint images

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 1 )