By Topic

Statistical Test Compaction Using Binary Decision Trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

Because of the significant cost of explicitly testing an integrated, heterogeneous device for all its specifications, there is a need for a test methodology that minimizes test cost while maintaining product quality and limiting yield loss. The authors are developing a decision-tree-based statistical-learning methodology to compact the complete specification-based test set of an integrated device by eliminating redundant tests. A test is deemed redundant if its output can be reliably predicted using other tests that are not eliminated. To ensure the required accuracy for commercial devices, the authors employ a number of modeling and data-massaging techniques to reduce prediction error. Test compaction results produced for a commercial MEMS accelerometer are promising in that they indicate it is possible to eliminate an expensive mechanical test.

Published in:

IEEE Design & Test of Computers  (Volume:23 ,  Issue: 6 )