By Topic

Improving Automatic Detection of Defects in Castings by Applying Wavelet Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoli Li ; Center for Networking Control & Bioinformatics, Yanshan Univ., Qinhuangdao ; Tso, S.K. ; Xin-Ping Guan ; Qian Huang

X-ray-based inspection systems are a well-accepted technique for identification and evaluation of internal defects in castings, such as cracks, porosities, and foreign inclusions. In this paper, some images showing typical internal defects in the castings derived from an X-ray inspection system are processed by some traditional methods and wavelet technique in order to facilitate automatic detection of these internal defects. An X-ray inspection system used to detect the internal defects of castings and the typical internal casting defects is first addressed. Second, the second-order derivative and morphology operations, the row-by-row adaptive thresholding, and the two-dimensional (2-D) wavelet transform methods are described as potentially useful processing techniques. The first method can effectively detect air-holes and foreign-inclusion defects, and the second one can be suitable for detecting shrinkage cavities. Wavelet techniques, however, can effectively detect the three typical defects with a selected wavelet base and multiresolution levels. Results indicate that 2-D wavelet transform is a powerful method to analyze images derived from X-ray inspection for automatically detecting typical internal defects in the casting

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:53 ,  Issue: 6 )