By Topic

Turbo Decoding as Iterative Constrained Maximum-Likelihood Sequence Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
John MacLaren Walsh ; Dept. of Electr. & Comput. Eng., Drexel Univ., Philadelphia, PA ; Phillip A. Regalia ; C. Richard Johnson Jr.

The turbo decoder was not originally introduced as a solution to an optimization problem, which has impeded attempts to explain its excellent performance. Here it is shown, that the turbo decoder is an iterative method seeking a solution to an intuitively pleasing constrained optimization problem. In particular, the turbo decoder seeks the maximum-likelihood sequence (MLS) under the false assumption that the input to the encoders are chosen independently of each other in the parallel case, or that the output of the outer encoder is chosen independently of the input to the inner encoder in the serial case. To control the error introduced by the false assumption, the optimizations are performed subject to a constraint on the probability that the independent messages happen to coincide. When the constraining probability equals one, the global maximum of the constrained optimization problem is the maximum-likelihood sequence detection (MLSD), allowing for a theoretical connection between turbo decoding and MLSD. It is then shown that the turbo decoder is a nonlinear block Gauss-Seidel iteration that aims to solve the optimization problem by zeroing the gradient of the Lagrangian with a Lagrange multiplier of -1. Some conditions for the convergence for the turbo decoder are then given by adapting the existing literature for Gauss-Seidel iterations

Published in:

IEEE Transactions on Information Theory  (Volume:52 ,  Issue: 12 )