By Topic

Dynamics and Temperature-Dependence of 1.3- \mu{\hbox {m}} GaInNAs Double Quantum-Well Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Wei, Yongqiang ; Dept. of Microtechnology & Nanoscience, Chalmers Univ. of Technol., Goteborg ; Gustavsson, J.S. ; Sadeghi, M. ; Shumin Wang
more authors

We have measured the small-signal modulation response of 1.3-mum ridge waveguide GaInNAs double quantum-well lasers over a wide range of temperatures (25 degC-110 degC) and analyzed the temperature dependence of the modulation bandwidth and the various bandwidth limiting effects. The lasers have low threshold currents and high differential efficiencies with small temperature dependencies. A short-cavity (350 mum) laser has a modulation bandwidth as high as 17 GHz at room temperature, reducing to 4 GHz at 110 degC, while a laser with a longer cavity (580 mum) maintains a bandwidth of 8.6 GHz at 110 degC. We find that at all ambient temperatures the maximum bandwidth is limited by thermal effects as the temperature increases with current due to self-heating. The reduction and subsequent saturation of the resonance frequency with increasing current is due to a reduction of the differential gain and an increase of the threshold current with increasing temperature. We find large values for the differential gain and the gain compression factor. The differential gain decreases linearly with temperature while there is only a weak temperature dependence of the gain compression. At the highest temperature we also find evidence for transport effects that increase the damping rate and reduce the intrinsic bandwidth

Published in:

Quantum Electronics, IEEE Journal of  (Volume:42 ,  Issue: 12 )