Cart (Loading....) | Create Account
Close category search window

Absolute Conductivity Reconstruction in Magnetic Induction Tomography Using a Nonlinear Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soleimani, M. ; WilliamLee Innovation Center, Manchester Univ. ; Lionheart, W.R.B.

Magnetic induction tomography (MIT) attempts to image the electrical and magnetic characteristics of a target using impedance measurement data from pairs of excitation and detection coils. This inverse eddy current problem is nonlinear and also severely ill posed so regularization is required for a stable solution. A regularized Gauss-Newton algorithm has been implemented as a nonlinear, iterative inverse solver. In this algorithm, one needs to solve the forward problem and recalculate the Jacobian matrix for each iteration. The forward problem has been solved using an edge based finite element method for magnetic vector potential A and electrical scalar potential V, a so called A, A-V formulation. A theoretical study of the general inverse eddy current problem and a derivation, paying special attention to the boundary conditions, of an adjoint field formula for the Jacobian is given. This efficient formula calculates the change in measured induced voltage due to a small perturbation of the conductivity in a region. This has the advantage that it involves only the inner product of the electric fields when two different coils are excited, and these are convenient computationally. This paper also shows that the sensitivity maps change significantly when the conductivity distribution changes, demonstrating the necessity for a nonlinear reconstruction algorithm. The performance of the inverse solver has been examined and results presented from simulated data with added noise

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 12 )

Date of Publication:

Dec. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.