By Topic

Statistical Modeling and Reconstruction of Randoms Precorrected PET Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Quanzheng Li ; Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA ; Leahy, R.M.

Randoms precorrected positron emission tomography (PET) data is formed as the difference of two Poisson random variables. Its exact probability mass function (PMF) is inconvenient for use in likelihood-based iterative image reconstruction as it contains an infinite summation. The shifted Poisson model is a tractable approximation to this PMF but requires that negative values are truncated, resulting in positively biased reconstructions in low count studies. Here we analyze the properties of the exact PMF and propose a simple but accurate approximation that allows negative valued data. We investigate the properties of this approximation and demonstrate its application to penalized maximum likelihood image reconstruction

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 12 )