By Topic

Performance Preserving Topological Downscaling of Internet-Like Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fragkiskos Papadopoulos ; Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA ; Konstantinos Psounis ; Ramesh Govindan

The Internet is a large, heterogeneous system operating at very high speeds and consisting of a large number of users. Researchers use a suite of tools and techniques in order to understand the performance of complex networks like the Internet: measurements, simulations, and deployments on small to medium-scale testbeds. This work considers a novel addition to this suite: a class of methods to scale down the topology of the Internet that enables researchers to create and observe a smaller replica, and extrapolate its performance to the expected performance of the larger Internet. This is complementary to the work of Psounis, 2003, where the authors presented a way to scale down the Internet in time, by creating a slower replica of the original system. The key insight that we leverage in this work is that only the congested links along the path of each flow introduce sizable queueing delays and dependencies among flows. Hence, one might hope that the network properties can be captured by a topology that consists of the congested links only. Using extensive simulations with transmission control protocol (TCP) traffic and theoretical analysis, we show that it is possible to achieve this kind of performance scaling even on topologies the size of the CENIC backbone (that provides Internet access to higher education institutions in California). We also show that simulating a scaled topology can be up to two orders of magnitude faster than simulating the original topology

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:24 ,  Issue: 12 )