By Topic

Real-Time Bayesian 3-D Pose Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qiang Wang ; Microsoft Res. Asia, Beijing ; Weiwei Zhang ; Xiaoou Tang ; Heung-Yeung Shum

In this paper, we propose a novel approach for real-time 3-D tracking of object pose from a single camera. We formulate the 3-D pose tracking task in a Bayesian framework which fuses feature correspondence information from both previous frame and some selected key-frames into the posterior distribution of pose. We also developed an inter-frame motion inference algorithm which can get reliable inter-frame feature correspondences and relative pose. Finally, the maximum a posteriori estimation of pose is obtained via stochastic sampling to achieve stable and drift-free tracking. Experiments show significant improvement of our algorithm over existing algorithms especially in the cases of tracking agile motion, severe occlusion, drastic illumination change, and large object scale change

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:16 ,  Issue: 12 )