By Topic

A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zixing Cai ; Coll. of Inf. Sci. & Eng., Central South Univ. Changsha, Hunan ; Yong Wang

A considerable number of constrained optimization evolutionary algorithms (COEAs) have been proposed due to increasing interest in solving constrained optimization problems (COPs) by evolutionary algorithms (EAs). In this paper, we first review existing COEAs. Then, a novel EA for constrained optimization is presented. In the process of population evolution, our algorithm is based on multiobjective optimization techniques, i.e., an individual in the parent population may be replaced if it is dominated by a nondominated individual in the offspring population. In addition, three models of a population-based algorithm-generator and an infeasible solution archiving and replacement mechanism are introduced. Furthermore, the simplex crossover is used as a recombination operator to enrich the exploration and exploitation abilities of the approach proposed. The new approach is tested on 13 well-known benchmark functions, and the empirical evidence suggests that it is robust, efficient, and generic when handling linear/nonlinear equality/inequality constraints. Compared with some other state-of-the-art algorithms, our algorithm remarkably outperforms them in terms of the best, mean, and worst objective function values and the standard deviations. It is noteworthy that our algorithm does not require the transformation of equality constraints into inequality constraints

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:10 ,  Issue: 6 )