By Topic

Multi-Spectral Holographic Three-Dimensional Image Fusion Using Discrete Wavelet Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Javidi, B. ; Electr. & Comput. Eng. Dept., Connecticut Univ., Storrs, CT ; Cuong Manh Do ; Seung-Hyun Hong ; Nomura, T.

We present multi-spectral holographic three-dimensional image fusion using the discrete wavelet transform (DWT). The fusion results are compared with those of the Gaussian and Laplacian pyramid fusion methods. The advantage of the DWT over other methods is that it has more flexibility in controlling high frequency components as well as low frequency components, which improves the fused image quality. A wavelength tunable solid-state pumped laser is used to record up to 11 holograms with wavelengths from 567 to 613 nm. We present the fused reconstructed holographic images including multi-spectral fused images from the recorded multiple holograms. Fused multi-wavelength reconstructed holographic images provide multi-spectral information about the objects

Published in:

Display Technology, Journal of  (Volume:2 ,  Issue: 4 )