By Topic

Real-time Power-Aware Routing in Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Chipara, O. ; Washington Univ., St. Louis, MO ; He, Z. ; Guoliang Xing ; Qin Chen
more authors

Many wireless sensor network applications must resolve the inherent conflict between energy efficient communication and the need to achieve desired quality of service such as end-to-end communication delay. To address this challenge, we propose the real-time power-aware routing (RPAR) protocol, which achieves application-specified communication delays at low energy cost by dynamically adapting transmission power and routing decisions. RPAR features a power-aware forwarding policy and an efficient neighborhood manager that are optimized for resource-constrained wireless sensors. Moreover, RPAR addresses important practical issues in wireless sensor networks, including lossy links, scalability, and severe memory and bandwidth constraints. Simulations based on a realistic radio model of MICA2 motes show that RPAR significantly reduces the number of deadlines missed and energy consumption compared to existing real-time and energy-efficient routing protocols

Published in:

Quality of Service, 2006. IWQoS 2006. 14th IEEE International Workshop on

Date of Conference:

19-21 June 23006