Cart (Loading....) | Create Account
Close category search window
 

Robust Neural-Network-Based Classification of Premature Ventricular Contractions Using Wavelet Transform and Timing Interval Features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Inan, O.T. ; Dept. of Electr. Eng., Stanford Univ., CA ; Giovangrandi, L. ; Kovacs, G.T.A.

Automatic electrocardiogram (ECG) beat classification is essential to timely diagnosis of dangerous heart conditions. Specifically, accurate detection of premature ventricular contractions (PVCs) is imperative to prepare for the possible onset of life-threatening arrhythmias. Although many groups have developed highly accurate algorithms for detecting PVC beats, results have generally been limited to relatively small data sets. Additionally, many of the highest classification accuracies (>90%) have been achieved in experiments where training and testing sets overlapped significantly. Expanding the overall data set greatly reduces overall accuracy due to significant variation in ECG morphology among different patients. As a result, we believe that morphological information must be coupled with timing information, which is more constant among patients, in order to achieve high classification accuracy for larger data sets. With this approach, we combined wavelet-transformed ECG waves with timing information as our feature set for classification. We used select waveforms of 18 files of the MIT/BIH arrhythmia database, which provides an annotated collection of normal and arrhythmic beats, for training our neural-network classifier. We then tested the classifier on these 18 training files as well as 22 other files from the database. The accuracy was 95.16% over 93,281 beats from all 40 files, and 96.82% over the 22 files outside the training set in differentiating normal, PVC, and other beats

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 12 )

Date of Publication:

Dec. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.